Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions

نویسندگان

  • Seungwon Lee
  • Lars Jönsson
  • John W. Wilkins
  • Garnett W. Bryant
  • Gerhard Klimeck
چکیده

The electron-hole states of semiconductor quantum dots are investigated within the framework of empirical tight-binding descriptions for Si, as an example of an indirect-gap material, and InAs and CdSe as examples of typical III-V and II-VI direct-gap materials. We significantly improve the energies of the single-particle states by optimizing tight-binding parameters to give the best effective masses. As a result, the calculated excitonic gaps agree within 5% error with recent photoluminescence data for Si and CdSe but they agree less well for InAs. The electron-hole Coulomb interaction is insensitive to different ways of optimizing the tight-binding parameters. However, it is sensitive to the choice of atomic orbitals; this sensitivity decreases with increasing dot size. Quantitatively, tight-binding treatments of Coulomb interactions are reliable for dots with radii larger than 15–20 Å . Further, the effective range of the electron-hole exchange interaction is investigated in detail. In quantum dots of the direct-gap materials InAs and CdSe, the exchange interaction can be long ranged, extending over the whole dot when there is no local ~onsite! orthogonality between the electron and hole wave functions. By contrast, for Si quantum dots the extra phase factor due to the indirect gap effectively limits the range to about 15 Å, independent of the dot size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Modeling of Electronic and Electrical Characteristics of 0.3 0.7 Al Ga N / GaN Multiple Quantum Well Solar Cells

The present study was conducted to investigate current density of0.3 0.7 Al Ga N/ GaN multiple quantum well solar cell (MQWSC) under hydrostaticpressure. The effects of hydrostatic pressure were taken into account to measureparameters of 0.3 0.7 Al Ga N/ GaN MQWSC, such as interband transition energy, electronholewave functions, absorption coefficient, and dielectric con...

متن کامل

Short-range versus long-range electron-hole exchange interactions in semiconductor quantum dots

Using a many-body approach based on atomistic pseudopotential wave functions we show that the electronhole exchange interaction in semiconductor quantum dots is characterized by a large, previously neglected long-range component, originating from monopolar interactions of the transition density between different unit cells. The calculated electron-hole exchange splitting of CdSe and InP nanocry...

متن کامل

Ii-vi Semiconductor Quantum Dot Quantum Wells: a Tight-binding Study

We have developed a symmetry-based tight-binding (TB) method for calculating the electronic structure, exciton states and optical spectra in spherical semiconductor quantum dots (QD's). It is based on the semi-empirical sp^{3}s^{*} model, including thespin-orbit interaction. The TB parameters of the QD Hamiltonian are those used to reproduce the bulk semiconductor band structure. The surface da...

متن کامل

Diamagnetic response of exciton complexes in semiconductor quantum dots.

We report measurements of diamagnetic shifts for different exciton complexes confined in small InAs quantum dots. The measured diamagnetic responses are sensitive to the number of carriers in the exciton complexes, with systematic differences between neutral excitons, biexcitons, and trions. Theoretical calculations suggest that such systematic differences arise from very different extents of e...

متن کامل

Longitudinal wave function control in single quantum dots with an applied magnetic field

Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001